Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

Categories: Animals | Beauty | Nature | Photo project

There are about 17,500 species of butterflies in the world. Each one has a different shape and enchantingly unique wing coloration, but how do they get it?

Scientists from the University of Sheffield and the Central Laser Facility probably have found the answer. Recently there was a new study published in Nature Communications revealing that actin, a protein in butterflies’ scales, is crucial for the arrangement of butterflies’ colorful wing structures.

More info: Nature Communications

6 PHOTOS

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

1. Scientists from the University of Sheffield and the Central Laser Facility have discovered that actin, a protein in butterflies’ scales, is crucial for the arrangement of colorful structures

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

2. Image credits: Alias 0591

The scientists examined F-actin organization during wing scale development in the neotropical butterfly Heliconius sara

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

3. Image credits: Nature Communications

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

4.

Image credits: Nature Communications

Using powerful high-resolution microscopes, the researchers watched as actin shifted during scale growth and color formation, showing actin as crucial for creating a butterfly’s colors, and it is likely a universal process. Furthermore, actin disturbance experiments at later developmental stages resulted in near total loss of structural color.

“Actin is like a dressmaker, laying out and pinning the arrangement of these structures to shape the vibrant colors. Once the actin has finished its work, it departs the cell like the removal of pins in dressmaking,” explained Dr. Andrew Parnell, lead author of the study.

“Butterfly scale nanostructures are a powerful way in which to make long-lasting bright colors that don’t fade or become bleached by the ultraviolet rays of the sun. The museums of the world contain direct evidence of this,” he added.

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

5. Researchers have observed that if the actin structures were dismantled or too drastically altered, the colors faded before the eye

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

6. Image credits: John

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

7. Image credits: Унайзат Юшаева

Butterflies’ Scale Nano-Structures Are So Powerful That They Don’t Fade From Ultraviolet Sun Rays

8. 

Image credits: Christopher Perani

By studying the mechanisms behind butterfly wing coloration, researchers hope to gain insights into much broader areas of cell structure formation, which would include potential applications in sensing and diagnostics that could be crucial for a whole bunch of technologies including medicine. Replicating these actin structures would also offer rapid and responsive solutions outside traditional laboratory-based approaches.

“I find it fascinating that during metamorphosis, butterflies can produce these incredibly complicated structures that are so intricately patterned. Understanding how they do that and how it’s controlled by the machinery within the cell has given us new insights into how biological structures are formed more generally and how we might go about replicating those processes,” explained Dr. Nicola Nadeau, from the University of Sheffield’s School of Biosciences.

“As a microscopist, being part of this project has been incredibly exciting, we have visualized butterfly scales with an unprecedented level of detail. This research not only provides novel information on the tiny parts of these cells but also constitutes a tool for other scientists interested in studying similar structures in other organisms,” added Dr. Esther Garcia, from STFC Central Laser Facility.

Keywords: Butterflies | Nature | Beauty of nature | Ultraviolet sun rays | Species of butterflies | Wing coloration

Post News Article

Recent articles

Blond Sirte: the vanished people of the shamans who lived in the Northern Arctic
Blond Sirte: the vanished people of the shamans who lived in ...

Among the Russian who migrated to the North, there existed legends about the mysterious people of the white-eyed Chud, who was ...

Dead Man's Gold: What happens to gold crowns during cremation
Dead Man's Gold: What happens to gold crowns during cremation

Many are sure that after the death of a person, gold crowns remain to his relatives. The journalists of the Grunde online ...

22 times when going to a beauty salon turned out to be a failure
22 times when going to a beauty salon turned out to be a failure

All girls want to be beautiful! Especially before the New Year holidays. That's why there are queues at beauty salons these days. ...

Related articles

5 most beautiful waterfalls of the weather and time of year.
5 most beautiful waterfalls of the weather and time of year.

Waterfalls always attract the attention of lovers of natural wonders. They have an amazing effect on a person — violent streams ...

Poses all sorts of needs, poses all sorts of important: the position of the pet bed says about his attitude to you
Poses all sorts of needs, poses all sorts of important: the ...

If you have a cat or a dog, then with high probability it can be argued that he's sleeping next to you. Scientists came to the ...

15 places where autumn is especially beautiful
15 places where autumn is especially beautiful

Autumn is not always just cold and slush. It also has a unique charm. This is a period of colorful leaf fall, hot tea and light ...